
Goethe-Center for Scientific Computing (G-CSC)
Goethe-Universität Frankfurt am Main

Modeling and Simulation I
(Practical SIM1, WS 2018/19)

and
NeuroBioInformatik

(Übung NBI, WS 2018/19)
M. Huymayer, J. Wang, Dr. A. Nägel, Dr. M. Hoffer

Exercise sheet 3 (Due: Mo., 27.11.2017, 10h)

In Sheet 2 we introduced the explicit Euler method for the solution of sys-
tems of ODEs, i.e., we computed vector-valued solutions u : [t0, te]→ Rd. For
explicit methods, the step from a single ODE to systems of ODEs does not
require much structural change of the algorithm. However, for implicit me-
thods, a much broader framework has to be developed in order to implement
even a simple solver. The implicit methods presented in the lecture employ
the so called Newton method for estimating unew ≈ u(tk+1) from a known
approximation uold ≈ u(tk).
For Rd, the Newton method requires a solver for systems of linear equations
comprising the Jacobian matrix J ∈ Rd×d. In task 1 we will develop a matrix
solver which will then be used within the Newton method required for the
implicit ODE solver.

Aufgabe 1 (8P + 2P)
The task of this exercise is to implement a solver for matrix equations, i.e.,
given a vector b ∈ RN and a non-singular matrix A ∈ RN×N , the routine
must return a vector x ∈ RN such that the matrix equation

Ax = b

holds. In order to do so, we employ the so called LU decomposition of a
matrix. Its pseudo code is provided in Listing 1. The LU decomposition
receives a matrix A ∈ RN×N and replaces the entries Aij (1 ≤ i, j ≤ N)
by an upper-diagonal matrix U ∈ RN×N (i.e., matrix entries of U below
the diagonal are zero) and a lower-diagonal matrix L ∈ RN×N (i.e., matrix
entries of L above the diagonal are zero) such that

Aij :=

{
Lij, i < j,

Uij, i ≥ j.



Algorithm 1 LU-Decomposition
Require: A ∈ RN×N

for k = 1, . . . , N − 1 do
for j = k + 1, . . . , N do

Ajk :=
Ajk

Akk

for i = k + 1 . . . , N do
Aji := Aji −Aki ·Ajk

end for
end for

end for
Result: Modified matrix A storing the two triangular matrices L (lower-
diag.) and U (upper-diag.).

The diagonal entries of L are all equal to 1 and won’t be stored. That makes
the memory consumption optimal since both matrices L,U are stored in the
(no longer needed) memory of A and zero entries of the empty triangles are
not stored as well.
The decomposition provides matrices L,U, such that A = LU holds. The-
refore, in order to solve the linear equation system Ax = b, instead the
system LUx = b can be solved with two triangular matrices. Thus, we first
solve Ly = b with an auxiliary variable y and then solve for the final result
Ux = y in a second step.
The solution Ly = b is computed by forward substitution, i.e., the elements
of vector y are computed via

yi =
1

Lii

(
bi −

i−1∑
k=1

Lik · yk

)
, i = 1, 2, . . . , N − 1, N. (1)

The system Ux = y is then solved using backward substitution, i.e., the
elements of vector x are computed via

xi =
1

Uii

(
yi −

N∑
k=i+1

Uik · xk

)
, i = N,N − 1, N − 2, . . . , 2, 1. (2)

If required, also the inverseA−1 ∈ RN×N can be computed by notingAA−1 =
1 with the identity matrix 1 ∈ RN×N . Thus, choosing the vector bi as the
i-th column of the identity matrix and solving Axi = bi, this solution xi is
the i-th column of the inverse matrix A−1.



Hints:

• Caution: the pseudo-code does NOT use zero based numbering.

• To specify a matrix A in Groovy, use double[][] A.

• For testing purposes a matrix input is provided on the GitHub pa-
ge (http://bit.ly/2g4IRSh). It works similar to the VectorRhsODE
component class introduced in Sheet 2.

• Use the Matrix2String component which is provided on the GitHub
page to print your matrices (http://bit.ly/2eQNC5Q).

• Detect and handle errors caused by matrix singularity as follows: in-
troduce a check for matrix singularity in the outer loop (for k), e.g.,
if(A[k][k] == 0) throw new RuntimeException(“matrix singular”)

• To simplify debugging check your LU decomposition with an online
service, e.g., http://bit.ly/2g5QDyK.

• Similar services exist for matrix inversion, e.g., http://bit.ly/2eQz8mw

Tasks/Questions:

(a) Implement a Groovy class that performs the inversion of a given non-
singular matrix A ∈ RN×N of type double[][]. Structure your code by
the three step procedure described above: provide a method to compute
the LU decomposition, a method that returns a solution x for a vector
b, and a method that returns the matrix inverse A−1.

(b) Verify your implementation with the two non-singular 3x3 matrices availa-
ble on GitHub: http://bit.ly/2fssoYb.

Provide the output obtained with the Matrix2String component. To
verify your results, compute the product AA−1 which is equal to the
identity matrix.

Aufgabe 2 (7 P)
Implement the Crank-Nicolson scheme in order to solve the system of ordi-
nary differential equations (ODE)

Find u : [t0, tn]→ Rd, such that
∂
∂t
u(t) = f(t,u) on [t0, tn],

u(t0) = u0,

(3)

http://bit.ly/2g4IRSh
http://bit.ly/2eQNC5Q
http://bit.ly/2g5QDyK
http://bit.ly/2eQz8mw
http://bit.ly/2fssoYb


where u0 ∈ Rd is the start value and t0, tn ∈ R are the start- and endpoints
of the interesting time interval.

The Crank-Nicolson scheme is based on the iteration

tnew = told + h, (4)

unew = uold + h · 1
2

{
f(tnew,unew) + f(told,uold)

}
, (5)

where h is a given step size. Please note, that the computation of the new
solution value unew in equation (5) is in general a nonlinear problem. That
is why we reformulate the nonlinear problem as an equation of the form

g(unew) = 0. (6)

We use the Newton method to solve this equation. The Newton iteration is
performed by successively updating

unew ← unew − (Jg(u
new))−1g(unew) (7)

until a tolerance threshold ‖g(unew)‖ ≤ ε (with a small ε, e.g. 10−5) for the
Euclidean norm has been reached. Assume that the exact derivative of f
with respect to u, namely the Jacobian J(t,u), is known and provided by
the user. Further assume that the iteration parameter ε and maxIter are
used as shown in the practical session to control the Newton iteration.

Aufgabe 3 (3 P)
Use the Crank-Nicolson scheme in order to solve the Lotka-Volterra model
from Sheet 2, Exercise 2a. Produce plots with the VectorTrajectoryPlotter
with step-size h = 0.01 and h = 0.001. Compare your results with the solution
that has been obtained with the explicit Euler method.

Hints:

• Use the JacobianInput component from the github page to provide the
derivative for the Crank-Nicolson scheme: http://bit.ly/2g81Cpk.

• To prevent automatic project reloading or classloader problems, use the
new interface JacobianInputInterface as paramater type instead of
JacobianInput. The new type is part of the plugin
vectoroderhsinterface.jar.

http://bit.ly/2g81Cpk


• Use uold as a start value for the Newton method (just like we did in
the last Practical session).

Remark: Send your implemented source code as VRL-Studio project (.vrlp
file) and the answers to the questions as plain text in an email. Append the
pdfs produced with the TrajectoryPlotter to the email.
Send your solution to practical.sim1@gcsc.uni-frankfurt.de until Mon-
day, 27.11.2017, 10h.


